EECS 361 Test 2 Topics

- 1) Find the Fourier Transform of aperiodic signals
- 2) Find the Fourier Transform of periodic signals
- Find the Fourier Series of a periodic signal using the relationship between Fourier Transform and Fourier Series

$$x_{P}(t) = \sum_{k=-\infty}^{\infty} x(t - kT_{0}) = \sum_{n=-\infty}^{\infty} x_{n} e^{jn\omega_{0}t}$$
$$x(t) \leftrightarrow X(\omega)$$
$$x_{n} = \frac{1}{T_{0}} X(n\omega_{0})$$

- 4) Apply the Fourier Transform theorems and properties to find $X(\omega)$
- 5) Find signal power and energy using Parsaval's theorem
- 6) Determine the Transfer Function of linear time invariant systems $H(\omega) = |H(\omega)| e^{j\theta(\omega)}$ Finding $H(\omega)$ from block diagram and/or LCCDE
- 7) Determine the output of an LTI system given its input
- 8) Understand the concept of bandwidth and the inverse signal duration/bandwidth relationship
 - First zero definition
 - 3 dB definition
 - Inverse time duration-bandwidth relationship
- 9) Criteria for an ideal linear time invariant system Ideal Filters & Distortionless Transmission
 - a) Distortionless transmission $y(t)=Kx(t-\tau)$ $H(\omega)=Ke^{-j\omega\tau}$ for all ω , i.e., $|H(\omega)|=K$ and $\theta(\omega)=-\omega\tau$.
 - b) Signal x(t) has bandwidth B_{signal} then distortionless transmission with respect to x(t) if H(ω) has constant amplitude and linear phase (H(ω)=Ke^{-j $\omega\tau$}) over the signal bandwidth, B_{signal} .
 - c) ILPF \rightarrow H(ω)=Ke^{-j $\omega\tau$} for system bandwidth, B_H.
 - d) IBPF, IBRF, IHPF
 - e) If B_{System}>> B_{signal} then negligible distortion, where B_{System}=system bandwidth and B_{signal}=signal bandwidth
- 16) Basic modulation: DSB-SC, DSB-LC (AM), and FDM: Transmitters and Receivers

17) Sampling

- a) Sampling Theorem
- b) Sampling rate $f_s > 2B$ (Nyquist sampling rate =2B)
- c) Understanding the periodic nature of the spectrum of a sampled signal
- d) Aliasing; causes and remedies
- e) Recovery of x(t) from $x_s(t)$ using an LPF

18) Discrete Time Signals and Systems

- a) Discrete signal notation, e.g., $x[n] = \{a, b, c, d, ...\}$ then x[0] = c
- b) Discrete Time Signals u[n], $\delta[n]$, $\cos(\Omega n+\phi)$, $\mathbf{p}^n u[n]$

where Ω = the discrete-time angular frequency

- c) Discrete time LTI systems
 - Difference equations
 - ARMA format for difference equations
 - Block diagrams with delay blocks
 - Properties of Discrete Time Systems
 - o Linearity
 - Scaling
 - Additivity
 - Time-invariance
 - Memoryless (static) vs Memory (dynamic)
 - BIBO stable
 - o Casual
 - Discrete time impulse response, h[n]
- 19) Discrete Time Convolution
- 20) z-transform
 - a) Finding X(z) given x[n]
 - b) Finding x[n] given X(z)
 - c) Finding transfer function H(z) given
 - The impulse response
 - Difference equation
 - Block diagram
 - d) Finding locations of poles and zeros of H(z)
 - e) Finding frequency response $H(e^{j\Omega})$ and understanding its relationship to the unit circle.
 - f) Finding the system output given input = $A\cos(\Omega_{in}n+\phi)$